
FPDF MultiCell Function Explanation and Use Version 1.0

Overview:

The MultiCell function is part of the extensive PDF generating library that was
developed by Olivier Plathey. The library has become a major source of PDF
generation within PHP-based applications. The use of the MultiCell function has
generated occasional confusion and mis-understanding among new users to the
FPDF library. It is the intent of this paper to explain in detail the basic structure of
the function as well as providing application examples.

Intended Audience:

The contents of this paper are intended for individuals who have successfully
installed the FPDF library on their web server. Additionally, this paper assumes
that the reader has at least an intermediate level of experience in writing PHP
applications.

Conventions Used:

The following illustrated code examples will use these conventions:
1. Data is buffered into numerically indexed array(s).
2. The actual PDF generation is accomplished by calls to custom functions built

within the program's FPDF call. As such, the examples will be based on a
high level of object oriented coding.

© 2009 Timothy Bonesho Page 1 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

The PHP FPDF applications illustrated in this paper will follow the program
structure shown in Figure 1.

 Figure 1 Application Block Structure

Difference Between a MultiCell() and a Cell():

Both the Cell() and MultiCell() functions support the display of data in table
format. The MultiCell function allows text to be wrapped to new lines within the
boundaries established for the width of the MultiCell. In the Cell function, text is
only displayed within the originating line of the Cell call. It is not possible to
accommodate wrapped text within the Cell function.

© 2009 Timothy Bonesho Page 2 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

MultiCell Basics

The MultiCell consist of the following construction:

MultiCell(width of cell, height of each line, text content, border, alignment of the
text, fill boolean).

An example would be :

$this ->MultiCell(25,6,”Here's some text for display”, 'LRT', 'L', 0);

In the above example, the MultiCell width is set at 25 units that were specified in
the initial call to FPDF. Each line will have a height of 6. The text is self-
explanatory. The border (LRT) will display a border at the left L, right R and top T.
The text will be left justified in relation to the left boundary of the MultiCell. The
MultiCell will not be filled solid as noted in the last variable in the MultiCell.

Figure 2 : MultiCell Geometries

© 2009 Timothy Bonesho Page 3 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

Single Column Table:

The following section discusses the construction of a single column table. The
table contents will consist of multiple rows within the table.

After the data has been buffered to an array, it is necessary to do the basic
startup of the pdf generation. The following code shows an example of this
startup:

$file_nm='test.pdf';
$pdf=new PDF();
$pdf->Open($file_nm);
$pdf->SetTopMargin(10);
$pdf->AddPage(L);

This will initiate the creation of a new pdf file called “test.pdf” . The top margin is
being set at a value of 10 and the resulting PDF file will be in landscape
orientation as shown in the AddPage(L) call.

After the basic setup has been achieved, it is time to run the code that will
actually compile the pdf for output.

© 2009 Timothy Bonesho Page 4 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

The next step will involve passing the text data that has been buffered to the
specific function that will do the processing. For this example a single field of
data is passed in array ar1. Each row (record) of data will comprise a single
element in the array. The array ar1 is a one dimensional numerically indexed
array.

$pdf->Section($ar1);

The PHP environment that is being used for coding this program has the global
registration set to off. As a result, the data will be passed directly through the call
to the Section() function rather than reference through a global variable.

At the top of our PDF class, it is recommended to include some basic functionality
that has been developed by several contributors to the FPDF project. The basic
initial class for this exercise is defined as:

class PDF extends FPDF
{

#******************************
function PDF($orientation='l', $unit='mm', $format='tabloid')
{

$this->FPDF($orientation,$unit,$format);
}

The next recommended function to include in the basic class is the function for
sensing where page breaks need to occur.

function CheckPageBreak($h)
{

#If the height h would cause an overflow, add a new page immediately
if($this->GetY()+$h>$this->PageBreakTrigger)
{

$this->AddPage($this->CurOrientation);
}

}

Because the application contains variable length text, it will be necessary test for
a page break before the row of data is generated. This is accomplished through
the NbLines() function which is the next core function to be included in the class
extension.

© 2009 Timothy Bonesho Page 5 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

function NbLines($w,$txt)
{

//Computes the number of lines a MultiCell of width w will take
$cw=&$this->CurrentFont['cw'];
if($w==0)
$w=$this->w-$this->rMargin-$this->x;
$wmax=($w-2*$this->cMargin)*1000/$this->FontSize;
$s=str_replace("\r",'',$txt);
$nb=strlen($s);
if($nb>0 and $s[$nb-1]=="\n")
$nb--;
$sep=-1;
$i=0;
$j=0;
$l=0;
$nl=1;
while($i<$nb)
{

$c=$s[$i];
if($c=="\n")
{

$i++;
$sep=-1;
$j=$i;
$l=0;
$nl++;
continue;

}
if($c==' ')
$sep=$i;
$l+=$cw[$c];
if($l>$wmax)
{

if($sep==-1)
{

if($i==$j)
$i++;

}
else

$i=$sep+1;
$sep=-1;
$j=$i;
$l=0;
$nl++;

}
else

$i++;
}
return $nl;

}

© 2009 Timothy Bonesho Page 6 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

With the building of the support functions, the coding for the contents of the
single column table can start.

function Section($ar1)
{

add the page header
$this->CustomHeader();

set the font that will be used
$this->SetFont('Arial', '', 9);

for($i=0; $i<count($ar1); $i++)
{

bring the array element back to a local variable f1
$f1 = $ar1[$i];

the following will return the number of lines for the
text field f1 based on the font selected above as well
as a MultiCell width of 25
$lines = $this->NbLines($f1, 25);

variable hx will yeild the amount of Y consummed by this
line of text

$hx = $lines * 6;

From the code listed, the data array has been brought into the function Section().
The first thing generated is the CustomHeader for the data page (this will be
covered later).

After the header is issued, the default font used in the table contents is set.

From this point forward, the program is going to reiterate through the array
containing the text data one row (record) at a time. The commented areas in the
code should provide adequate explanation of what is going on. Note that the
multiplier of 6 used in the $hx variable will probably need a little experimentation
if the font used is anything but Arial size 9.

now going to check to see if the text in f1 will cause
a page break

if($this->GetY() + $hx > $this->PageBreakTrigger)
{

going to add a new page
$this->AddPage($this->CurOrientation);

now going to check to see if the text in f1 will cause
a page break

© 2009 Timothy Bonesho Page 7 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

if($this->GetY() + $hx > $this->PageBreakTrigger)
{

going to add a new page
$this->AddPage($this->CurOrientation);
add the page header
$this->CustomHeader();
space the start of the text 5 mm below the end of the header
$this->Ln(5);
reset the font to what is needed for the text display (content)
$this->SetFont('Arial', '', 9);

}

The code illustrated above deals with text that may extend beyond the current
page break boundary. If the incoming text exceed the limits base on the current Y
position plus the amount of Y consumed by the text field $f1, then a page break
is issued along with a new header. The text font is re-defined in this slice of code
because a different size font may be used in the CustomHeader.

The actual MultiCell is generated from the following code.
now going to generate the MultiCell
$this->MultiCell(25,6,$f1,1,'L',0);

if you want a space between the next row, insert a value
in the Ln() call, otherwise insert a 0
$this->Ln(0);

}
}

From the example above, the width is set at “25” and the row height is “6”. The
text used to populate the MultiCell is “$f1”. The next variable “1” is for the
border. In this example the border used will be a complete frame around the
MultiCell. The text within the MultiCell will be left justified as defined with the
value of “L”. Finally, this MultiCell will not be filled solid as reflected in the last
variable value of “0”.

The Ln(0) call is issued to bring the active XY position back to the X origination. If
the layout of the table calls for physical spacing between rows, a value other than
0 would be inserted within the Ln(0) call, other wise issue a 0 value as shown.

This completes the construction of a single column table using the MultiCell
method.

© 2009 Timothy Bonesho Page 8 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

Multiple Column Table

The multiple column table presents a few additional considerations when the
MultiCell is used. The following code example assumes that there are 3 fields of
variable text data in the data array $ar1 (f1, f2, and f3). Each of these fields is of
variable length from record to record. It is also assumed that a uniform border will
be drawn around each cell in the table.

Following the example used in the single column table, if nothing was done with
the 3 fields other than to initiate a MultiCell call to each text field, the resulting
table row might look like the following illustration.

Figure 3 :

This is not a desirable table layout from a formatting standpoint. Each
subsequent row of the table would vary depending upon the variable length of
each field.

© 2009 Timothy Bonesho Page 9 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

The recommended way to resolve this situation is to do the pre-calculation of the
maximum row height before the multiple MultiCell calls are made. The engine
for this calculation comes from the function NbLines() that was previously built
into the top of the class extension.

function Section($ar1)
{

add the page header
$this->CustomHeader();

set the font that will be used
$this->SetFont('Arial', '', 9);

for($i=0; $i<count($ar1); $i++)
{

bring the array element back to a local variable f1, f2, f3
$f1 = $ar1[$i][0];
$f2 = $ar1[$i][1];
$f3 = $ar1[$i][2];

the following will return the number of lines for the
text field f1, f2, and f3
$nb1 = $this->NbLines($f1,25);
$nb2 = $this->NbLines($f2,35);
$nb3 = $this->NbLines($f3,20);

variable hx will yeild the amount of Y consummed by this
line of text

$hx = max($nb1, $nb2, $nb3) * 6;

In the example, a separate variable is assigned to the NbLines() calculation for
each text field. Also note, that for this example different width cells are used for
each data field as identified in the second variable in the respective NbLines calls.

The final part of this preparation work calculates then maximum value of the Y
dimension that will be consumed with this row of data (variable $hx).

© 2009 Timothy Bonesho Page 10 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

At this point in the application it is necessary to test whether a page break is
necessary before generating the next row of the table.

now going to check to see if the text in f1 will cause
a page break

if($this->GetY() + $hx > $this->PageBreakTrigger)
{

going to add a new page
$this->AddPage($this->CurOrientation);
add the page header
$this->CustomHeader();
space the start of the text 5 mm below the end of the header
$this->Ln(5);
reset the font to what is needed for the text display (content)
$this->SetFont('Arial', '', 9);

}

There is some additional preparation that needs to be done at this point before
the actual MultiCell generation starts. Since a new row of the table is starting, the
starting point X and Y values need to be assigned to distinct variables.

$startx = $this->GetX();
$starty = $this->GetY();
$rowmaxy = $starty + $hx;

The variable $rowmaxy reflects the maximum Y position for the new row of data.

start of the MultiCell for field f1
set our current position to the starting point
$this ->SetXY($startx, $starty);
actual MultiCell for f1
$this->MultiCell(25,6,$f1,'LRT','L',0);

The above code will generate the actual first MultiCell. Note that the starting
coordinate is set with the SetXY($startx, $starty) call.

© 2009 Timothy Bonesho Page 11 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

The next part gets a little bit tricky inasmuch the framing on each cell (MultiCell)
is going to be balanced out for the row. If this step is not performed, the resulting
table row might look like Figure 4 :

Figure 4:

That's better than the previous example but still not good formatting for the row
of tabled data. The challenge is to finish off the bottom portion of each cell so
that all cells within the row line up with respect to the bottom maximum Y
dimension for the row. Figure 5 illustrates the situation for completing the cell.

Figure 5 :

The bold lines show the border that was drawn using the 'LRT' call within the
MultiCell. The dotted border reflects the area that needs to be drawn to finish off
the MultiCell.

© 2009 Timothy Bonesho Page 12 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

The following code will finish off the border for the variable length text field “f1”.

will set the present Y location with a new variable $tempy
$tempy = $this->GetY();
now set the present location to the starting point on
the X axis and our current Y position
$this->SetXY($startx, $tempy);
now test to see if this Y location is less than our row
maximum Y as calculated earlier as variable $rowmaxy
if($temp < $rowmaxy)
{

compute the Y distance from the current temporary Y
to the row maximum Y ($diffy)
$diffy = $rowmaxy - $tempy;
now going to draw a pseudo multi-cell with no text to
finish the cell outlilne
$this->MultiCell(25,$diffy, '' , 'LRB', 'C', 0);

}
else
{

we are at the row's maximum Y Only need to draw the
bottom border of the cell
$this->MultiCell(25,0,'','B','C',0);

}

The only thing that remains for this cell is to now increment the X axis start point
to the end of the cell we just created.

$addx = $this->GetX();
$startx+= $addx;

© 2009 Timothy Bonesho Page 13 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

Repeat this same process for each of the remaining text fields ($f2 and $f3). The
following code finishes off the generation of the MultiCell table for the data
contained in $ar1.

insert duplicate type of code for f2 and f3 here. Adjust
the variables for the cell width where applicable

at the completion of the row of data :

$this->Ln(0);
this will set the current location at the maximum Y for the row and
the X location will be at the left margin

}

If the table contains a fair number of cells, it is recommended to move the
functionality of the border finishing calculations and generation to a callable
function with the associated variables passed to the function. This will save a lot
of repetitive code generation.

Finishing off the PDF Generation :

It is now time to return to the bottom portion of the program to finalize the actual
PDF generation as shown in the bold text below.

$file_nm='test.pdf';
$pdf=new PDF();
$pdf->Open($file_nm);
$pdf->SetTopMargin(10);
$pdf->AddPage(L);
$pdf->Section($ar1);
$pdf->Output($_SERVER['DOCUMENT_ROOT'].'/PDF/'.$file_nm);
$pdf->Close();

include $_SERVER['DOCUMENT_ROOT'].'/reports/menu1.php';

exit;
?>

© 2009 Timothy Bonesho Page 14 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

Custom Header :

As mentioned previously, for this example a custom header was utilized. The
custom header is embedded within the class extension of the FPDF as a separate
callable function. If your project gets complex, you can create as many different
custom headers as required. Call the headers within your equivalent to the
Section() part of the code. As an illustration, in an application that I created
several years ago, the PDF produced had 14 different forms embedded as part of
the PDF output file. Each form had it's own unique header as called by the
respective section generating code. To help you get started, here's a snippet of a
simple custom header.

function CustomHeader($ar2)
{

$project_in = $ar2[0];
$fdesc_in = $ar2[1];
$family_in = $ar2[2];
$fchild_in = $ar2[3];$

$this->SetFillColor(217,217,217);
$this->SetFont('Arial','B',18);
main title - fixed length so we used the cell vs mulitcell
$this->Cell(0,10,'A Sample Custom Header',0,1,'C',0);
$this->Ln(0);$

#row of captions
$this->SetFont('Arial','',9);
$this->Cell(30,4,'Project',0,0,'C',0);
$this->Cell(105,4,'Description',0,0,'C',0);
$this->Cell(15,4,'Family',0,0,'C',0);
$this->Cell(105,4,'Child',0,1,'C',0);
$this->Ln(0);$

#row of values
$this->SetFont('Arial','',12);
$this->Cell(30,6,$fproject_in,1,0,'C',0);
$this->Cell(105,6,$fdesc_in,1,0,'C',0);
$this->Cell(15,6,$family_in,1,0,'C',0);
$this->Cell(105,6,$fchild_in,1,1,'C',0);
$this->Ln(0);
$this->Cell(255,2,str_repeat('_',130),0,1,'C',0);
$this->Ln(2);

}

© 2009 Timothy Bonesho Page 15 of 16

FPDF MultiCell Function Explanation and Use Version 1.0

Conclusion :

The MultiCell function facilitates the generation of complex table structures within
the FPDF PDF generating library. When used properly, the application can handle
variable length data within each cell of the table. Simplistically stated, the
MultiCell function is all about geometries. Within the application, the developer
needs to keep track of the current X and Y locations in relation to the coordinates
that the new row of data started with.

Olivier Plathey and the other developers of the FPDF library are to be commended
for producing such a high quality, stable product for open source usage. In the
five + years that I have used the library, I have found it's application to be
consistently stable and meeting the requirements for successful PDF generation.
The library does come with a rather significant learning curve so the developer
should be prepared to devote adequate time to learn the effective use of the
library.

Links:

The core library and supporting documentation can be found at:

http://www.fpdf.org/

© 2009 Timothy Bonesho Page 16 of 16

http://www.fpdf.org/

